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Abstract

We describe a useful setting for interactive, real-time study of mathematical models of cardiac electrical activity,
using implicit and explicit integration schemes implemented in JAVA. These programs are intended as a teaching aid
for the study and understanding of general excitable media. Particularly for cardiac cell models and the ionic currents
underlying their basic electrical dynamics. Within the programs, excitable media properties such as thresholds and
refractoriness and their dependence on parameter values can be analyzed. In addition, the cardiac model applets allow
the study of reentrant tachyarrhythmias using premature stimuli and conduction blocks to induce or to terminate
reentrant waves of electrical activation in one and two dimensions. The role of some physiological parameters in the
transition from tachycardia to fibrillation also can be analyzed by varying the maximum conductances of ion channels
associated with a given model in real time during the simulations. These applets are available for download at
http://arrhythmia.hofstra.edu or its mirror site http://stardec.ascc.neu.edu/� fenton. © 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Mathematical models of biological and com-
plex systems demonstrate many phenomena found

in nature. In particular, models of cardiac electri-
cal activity in cells can be used to illustrate some
of the mechanisms underlying cardiac arrhyth-
mias. The continuous increase in computer power
over the years has made it possible to solve many
of these models using desktop computers. How-
ever, systematic study of these models is greatly
enhanced by using a graphical user interface
(GUI) for variation of parameters, visualization,
and the analysis of results.
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The JAVA language is a natural choice for inter-
face programming for several reasons. First, it is
straightforward to register on-screen user interac-
tions, such as mouse events, alphanumeric inputs,
and click-choice events (e.g. buttons and check-
boxes). In addition, it is easy to change parame-
ters in real time and to plot in one, two and three
dimensions, allowing easy visualization of results.
Furthermore, since executables are platform-inde-
pendent, programs can be run in different ma-
chines and operating systems as well as through
the internet. However, using JAVA as a program-
ming language can have some drawbacks. In some
cases, unless substantial optimization is per-
formed on a specific algorithm, computational
speed can increase unacceptably. In other cases, a
well-optimized program may already exist in
other language, or the program may use standard
subroutines that cannot easily be imported into
JAVA. In addition, the program may need to
perform external system commands, which JAVA

does not allow for security reasons. However,
these problems can be overcome by using the
JAVA Native Interface (JNI) options, which allows
JAVA to interact with applications and libraries
written in other (native) languages.

We present in this paper a set of JAVA applets
intended for the study of excitable media— in
particular, models that describe cardiac electrical
activity in single cells, 1- and 2-D tissues. In
Section 2, we briefly describe methods and al-
gorithms used in writing the JAVA applets. Section
3 gives an overview of excitable media and pro-
vides the basic equations the applets are designed
to solve. In Section 4, we discuss several represen-
tative applets for single cells, 1-D cables, and 2-D
tissues. In Section 5, we present conclusions and
discuss future work. In addition, we provide an
appendix (Appendix A) with a general example
showing how to call C and FORTRAN subroutines
from JAVA, which is useful when JAVA is used
only as a GUI wrapper.

Other groups have developed computational
systems for cardiac modeling and made them
available publicly (Barry, 1998; Henriquez et al.,
2000; Li, 2000; Joe, 1997; CellML, 2000; NR-
CAM, 2001). Barry’s software requires a fee;
other software and our software are available for

free for non-commercial purposes. EASIWAV from
Henriquez’s group simulates cardiac wave propa-
gation over a 2D domain and features nonuni-
form anisotropy, irregular geometries, multiple
membrane models and simulation modules, all
with an intuitive GUI interface that runs under
UNIX. Li provides a program for modeling the
action potential (AP) of a canine ventricular cell.
Li’s software runs on the net under X-WINDOWS.
Joe provides a web-based simulation (using JAVA

and JAVASCRIPT) of the heart’s specialized con-
duction system. CELLML is an XML-based lan-
guage intended to store and exchange
computer-based biological models. NRCAM of-
fers a similar approach in their ‘virtual cell’, a
general computational framework for modeling
biological processes, at the cellular level.

In contrast, the present programs, and related
material on our web site supplementary to this
paper, are designed especially for educational use
and exploratory research. The advantage of these
programs is that they cover a wide range of
models and geometries with an easy-to-use inter-
face for simulating complex cardiac electrical dy-
namics. They are also readily available on the
Internet and run under any operating system. In
this manuscript we provide a description of both
the use of JAVA together with traditional scientific
languages and the models themselves.

This paper is dedicated to the memory of
Michael Conrad. Professor Conrad worked at the
interface between biology and computation, and
was in many ways well ahead of the recent thrust
in computational biology. His work on computa-
tional models of the brain led to many more
recent developments. The journal BioSystems also
reflects his philosophy and guidance as Editor,
with its emphasis on theory well grounded in
experiment. Finally, Professor Conrad considered
teaching an essential part of his career and left a
legacy of Ph.D. students. One of us (H.M. Hast-
ings) had the pleasure of knowing Professor Con-
rad as a colleague and writing two papers with
him (Hastings and Conrad, 1979; Conrad and
Hastings, 1985). Our present paper on computa-
tional models of cardiac dynamics and other ex-
citable media, and its goal of promoting the
computer as an experimental and educational
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tool, follows his tradition. More generally, the
continued growth of computational approaches to
biology recognizes Professor Conrad’s vision and
leadership.

2. Systems, methods, and algorithms

The implementation of the programs consists of
two major parts, the graphical interface that in-
puts and outputs data; and the integration of the
differential equations of a given mathematical cell
model. In the graphical interface, the input of
events is handled using the standard methods
from the java.awt.*, java.awt.event.* and
Java.lang.* classes (SUN, 1997). Basic plotting of
graphs and images is relatively simple and many
useful examples can be found at (SUN, 1997).
However, when a large number of pixels need to
be frequently drawn, there are some advanced
procedures that are worth mentioning. The sim-
plest way to draw graphs and small images is to
use the fillLine(x1,y1,x2,y2) method, which can
create pixels when given identical starting and
ending coordinates (x1=x2 and y1=y2) and in
general is faster than fillRect(). When generating
large images that require a significant set of pixels,
this method becomes extremely slow, and the
java.awt.image.MemoryImageSource class is a
better choice. This class is an implementation of
the ImageProducer interface, which uses an array
to produce pixel values and can generate images
at high speeds, so little time is spent in the plot-
ting procedures. In addition, flickering effects can
be avoided by using the createImage() method as
a buffer (SUN, 1997).

For the numerical integration component, all
applets discussed in this paper except for the
rabbit ventricular slice are integrated using time-
stepping implicit schemes that are unconditionally
stable and have no other restriction on the size of
the time step �t other than accuracy. For the
single cell and the 1D applets an implicit Euler
scheme is used. For the 2D square tissue applet
we used an alternating direction implicit (ADI)
scheme (Press et al., 1992). For the 2D rabbit
ventricular slice applet we used a phase-field
method (Fenton et al., 2001) to handle the irregu-

lar boundary conditions combined with an ex-
plicit Euler scheme.

All the programs presented in this article were
written in JAVA (version 1.1.7B-2) on a Compaq
Alpha workstation. The programs have been com-
piled and run successfully on PCs under WIN-

DOWS using Sun-JAVA 1.3.0 and on PCs under
LINUX using IBM-JAVA 1.1.8 and/or kaffe 1.0.6.

3. Models

The mathematical models we implement in our
JAVA applets all represent excitable media, a class
of nonlinear complex systems of which cardiac
electrical dynamics is an example. Excitable media
can be defined as systems composed of elementary
segments or cells, each of which possesses the
following properties:
1. a well-defined rest state,
2. a threshold for excitation, and
3. a diffusive-type coupling to its nearest

neighbors.
By a threshold for excitation, we mean that any

external stimulus applied to a cell that keeps that
cell below this threshold produces a qualitatively
different result than a stimulus that raises the cell
above threshold. Stimuli below the threshold are
damped out and produce no persistent change in
the system, which simply returns to the rest state.
However, stimuli above the threshold induce the
cell to change from its rest state to an excited
state. This change produces a pulse in time whose
shape and nature are determined by the nonlinear
properties of the medium and do not depend on
the form of the external excitation. In spatially-ex-
tended excitable systems, the excitation pulse may
be carried over from one elementary segment to
the next by means of a diffusive coupling. The
excitability of the tissue and the coupling strength
between neighbors determines the minimum size
of tissue required for a pulse to expand and
propagate as a traveling wave front. The waves in
excitable media have the property of propagating
without damping.

Cardiac and nerve cells can be considered as
elementary segments of excitable media because
they exhibit these three characteristics, as we now
describe:
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1. Well-defined rest state. The cell membrane is a
bilayer structure composed of molecules called
phospholipids, with a polar (charged) side and
a nonpolar fatty side. These molecules not
only function as a barrier to retain vital cell
components but also provide an electrical in-
sulation between the intracellular ionic con-
centrations and the extracellular ones. Since
ions generally are not very soluble in hydro-
phobic environments such as within the cell
membrane, they normally cannot cross the
membrane. The membrane thus maintains a
concentration gradient and consequently a net
membrane potential. That is, the cells have a
rest state, which for cardiac muscle cells gener-
ally is between −90 and −80 mV, and about
−60 mV for nerve cells.

2. Threshold for excitation. Cardiac and nerve
cells can synthesize linear polymers of amino
acids (proteins) that interact with the mem-
brane. Some of these can span the entire mem-
brane to form aqueous pores, which connect
the intra- and extracellular media and allow
the flow of ions across the membrane. These
ion channels have two important properties
with respect to ion flux, their ability to be
either open or closed and a selective perme-
ability. The opening and closing of the ionic
channels is produced by different protein
configurations. The probability of a channel
being open or closed in general is voltage-de-
pendent, and in many mathematical models
the stochastic nature of the channels is re-
placed by a voltage-dependent probability
function that describes what fraction of the
total number of channels is likely to be open.
The selective permeability allows the flux of
only certain kinds of ions through a given type
of channel. Many (but not all) ionic channels
are closed when the membrane is at the resting
potential, but a sufficient change in voltage
(the threshold) causes the channels to open.
With the channels open, a greater flux of ions
is allowed, producing a greater change in
voltage and the generation of a superthreshold
response, known as an action potential (AP).
The ion channels eventually inactivate and the
membrane potential returns to the rest state.

3. APs propagate from cell to cell in the heart
mostly through connections called gap junc-
tions through which the local internal electri-
cal current flows. The propagation of electrical
impulses in one dimension can be modeled in a
simple manner by assuming cardiac cells to be
cylinders that connect to one another, forming
a continuous long cylindrical fiber with inter-
nal cytoplasm of uniform resistivity ra per unit
length. The validity of this approach has been
supported experimentally (Chapman and Fry,
1978). A further simplification can be obtained
by considering the extracellular fluid to be
grounded (for the more general case
‘bidomain’ see Henriquez and Papazoglou
(1996)). Then the propagation of an impulse
along a one-dimensional cylindrical cable de-
pends on the flow of electric current along the
fiber from active to resting regions. As the
axial current Ia flows along the fiber, some of
it leaks across the surface membrane as mem-
brane current Im, as shown in Fig. 1.

The amount of membrane current in any re-
gion, therefore, must be of equal magnitude and
opposite direction to the change in axial current
across the regions (charge conservation), thus:

Im2�rl= [Ia(x+ l)−Ia(x)]�r2� −
��ia

�x
�

�lr2 (1)

Since we consider that the intracellular medium
has a resistivity �, the flow of current along the
cable is proportional to the voltage gradient by
Ohm’s law, hence:

��Vm

�x
�

= −�ia (2)

Fig. 1. Cable model composed by multiple cylindrical elements
of radius r and length l. The axial current is Ia and the current
crossing the membrane is Im. Any change in Ia is then reflected
in the flow of Im.
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The total membrane current per unit length, Im,
includes the currents from the flux of ions
through the ion channels plus a capacitive cur-
rent, Ic, due to the dielectric constant of the cell
membrane layer. This defines the membrane cur-
rent as:

Im=Ic +Iion=Cm
��Vm

�t
�

+ Iion (3)

By combining Eqs. (1)– (3) we obtain the equa-
tion used to describe voltage propagation along a
1D cable:

��Vm

�t
�

=r
��2Vm/�x2

2�Cm

�
−

Iion

Cm

=D
��2Vm

�x2

�
−

Iion

Cm

(4)

Typically Cm is assigned the value 1 �F/cm2,
�=0.2 k� cm and 2/r is the surface-to-volume
ratio S�. The value for the diffusion coefficient D
most commonly used in the literature is 0.001
cm2/ms, which assumes a S� of 5000/cm (however,
this corresponds to a relatively small cell radius of
about 4 �m). Cardiac tissue and other excitable
media, such as the Belousov–Zhabotinsky
chemical reaction (Belmonte et al., 1997), aggre-
gations of Dictyostelium amoebae (Loomis, 1982),
and cortical neural preparations (Shibata and Bu-
res, 1974), can exhibit many different patterns,
including plane and circular (or elliptical) waves
in two and three-dimensions. However a more
interesting pattern, a spiral wave, can be in-
duced in excitable media when a propagating
wave is broken. The site of a wave break forces
the wave front and wave back to meet at one
point which will have an undefined phase. These
phase singularities have zero normal velocity and
serve as pivot points about which wave rotates,
causing broken waves to evolve into spirals.
Spiral waves are of particular interest in cardiol-
ogy because they can induce continuous electrical
activations and consequently mechanical
contractions at a much more rapid rate than usual
(Gray et al., 1998), resulting in a mechanism for
serious arrhythmias, such as tachycardia
and fibrillation (Winfree, 1998 and references
therein).

4. Applets

The JAVA applets for excitable media, cardiac
and nerve cell models presented here, are useful to
explain the increasingly complex dynamics arising
with the addition of spatial dimensions from sin-
gle cells to one and two dimensions. The mathe-
matical models implemented use Eq. (4) as their
basis and differ only in their definitions of the
ionic current sum Iion.

For each applet, we describe some of the exper-
iments that can be performed to help illustrate
how the model works.

4.1. Single cell applets

Several different models with different levels of
complexity exist to describe cellular dynamics. In
the following sections we discuss four of these cell
models, the Hodgkin and Huxley model for nerve
cells; the FitzHugh–Nagumo model for general
excitable media; and the Beeler–Reuter and Luo–
Rudy 1 models for cardiac cells. Other cell models
available for download from the web site but not
described in this paper include the Noble (1962),
Karma (1993) and 3v (Fenton and Karma, 1998)
models.

4.1.1. The Hodgkin and Huxley (HH) model
applet

In the 1950s, Hodgkin and Huxley (1952) intro-
duced the first continuum mathematical model
designed to reproduce the membrane AP. In their
model, they assumed that when the membrane
potential was not equal to the equilibrium poten-
tial, there would be a net flow of ions propor-
tional to the difference between the membrane
potential and the equilibrium potential. Thus for
an ion species labeled y with a corresponding
current iy, Ohm’s law gave the equation iy=
(Vm−Vy)/ry=gy(Vm−Vy), where Vy is the equi-
librium potential, ry is the resistance to the flow of
ions, which can be expressed in terms of a mem-
brane conductance gy.

The ionic conductance is, in general, a nonlin-
ear function of the membrane voltage and can be
represented by several channels. In cells, the ion
channels are either open or closed, and in the case
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of voltage gating, the percentage of channels that
are open out of the total number of channels in
the cell is a function of the membrane voltage.
Therefore, the probability function y (known as a
gate variable) can be constructed to define what
fraction of the channels are open as a function of
voltage and time. Since gate variables range be-
tween 0 (all ion channels closed) and 1 (all ion
channels open), the total cell or tissue conduc-
tance gion due to a given ion is given by gion=
gy(t, V), where g is the maximum possible
conductance obtained when all channels are open.

Hodgkin and Huxley found that squid axon
sodium and potassium conductances, obtained
from voltage-clamp techniques, could be repro-
duced by using gate variables obeying simple first
order equations of the form:

dy
dt

=�y(V)(1−y)−�y(V)y (5)

where �y(V) and �y(V) can be complex functions
of the voltage. These equations describe how the
gates open and close at different time rates and as
a function of voltage, thereby controlling the ki-
netics of ionic flow through the channels.

Hodgkin and Huxley reproduced the squid
nerve AP by using three different currents: a
potassium current IK, a sodium current INa, and a
leak current later identified as chlorine ICl. These
three currents, whose sum is used in Eq. (4) to
define Iion, are formulated as follows:

IK=n4gK(V−VK)

INa=m3hgNa(V−VNa)

ICl=gCl(V−VCl) (6)

where h, m, and n are gate variables. The opening
and closing of the potassium ion channels is given
by the activation gate n, while the sodium chan-
nels are governed by the activation gate m and the
inactivation gate h. In this model the sodium
activation gate m operates on a time scale several
orders of magnitude faster than the other gates.
For further information about the model and
functions �y(V) and �y(V) we refer to the original
article (Hodgkin and Huxley, 1952).

Fig. 2 shows the Hodgkin–Huxley nerve model
applet. The program solves the equations and can

plot all four variables of the model simulta-
neously. The time of integration is initially set to
40 ms but can be varied easily by changing the
time value. Other parameters that can be changed
are the time at which above-threshold external
stimuli S1 and S2 are applied and the maximum
conductance of each of the three currents. The
gate variables range between 0 and 1 as described
above, but they are rescaled in the plot to assist in
concurrent visualization of gates and voltage.

When the program is run with the initial set-
tings, it plots two activations produced by the two
applied external stimuli, the first of which occurs
after 5 ms and the second after 18 ms. When a
stimulus is applied in the simulation, the voltage
changes from its resting value of −60 to −45
mV. At this voltage the sodium activation gate m
quickly opens, allowing the influx of sodium into
the cell and thereby depolarizing it. As the mem-
brane potential depolarizes, the slower sodium
inactivation gate h closes, and the sodium current
terminates (see Eq. (6), where the total current is
proportional to the product m3h). By the time the
sodium current has stopped, the much slower n
gate has opened completely, generating an efflux
of potassium ions that brings the cell membrane
back to the rest state. The time course of the
opening and closing of the gates as well as their
relative speed can be seen when plotted along with
the AP.

The timing for the stimuli S1 and S2 can be
varied to observe how the AP changes. In particu-
lar, smaller intervals between S1 and S2 can yield
interesting results if the second activation occurs
before all the gate variables have time to recover
completely. For example, by keeping S1 at 5 ms
and changing the timing of S2 to 15 ms, the AP
produced is a smaller one. If S2 is set to occur
after 14 ms or earlier, no activation is produced.
The explanation is simple, if a stimulus is induced
very soon after an activation and the ionic gates
have not had time to recover completely to their
rest states, the application of a stimulus generates
much less current than previously, resulting in
either a smaller activation or no activation at all.
This last effect is a property called refractoriness
and is found in many excitable media.
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Fig. 2. H–H applet showing two consecutive activations produced by two external stimuli (S1 and S2) above threshold. Red
corresponds to the membrane AP voltage and blue to the sodium gate h, which closes as the voltage increases and re-opens as the
voltage decreases back to the resting potential.
Fig. 3. (a) Effect of excitability on the APD and the restitution relation in the FHN model. The fast variable U is shown in red and
the slow variable � is shown in green. The large difference in time scale between the U and V process (�=0.0001) lengthens the
plateau phase of the activation. Notice that the second activation is smaller in amplitude and much shorter in duration than the first,
illustrating the effect of restitution. (b) Phase-plane analysis of the FHN model for 7 time units using the original settings. The
almost complete (U,�) trajectory is shown in orange, and the U and � nullclines are shown in red and green, respectively. (c)
Auto-oscillatory behavior in the FHN model induced by setting � to 0.15. Further discussion is given in the text.
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With the Hodgkin–Huxley applet, we also can
observe how the conductances affect the currents
and consequently the AP. For example, decreasing
the sodium conductance from 120 to 70 mmho/cm2

affects the time of rise the sodium current. If the
sodium conductance is further decreased to 40
mmho/cm2, it is no longer possible for the stimuli
S1 and S2 to produce APs. We can conclude that
a minimum sodium conductance is necessary to
produce an activation. On the other hand, increas-
ing the conductance too much can make the system
auto-oscillatory. For example, if a single stimulus
is applied, either by making S2 larger than the
integration time or by setting it equal to S1, we can
observe how the resting membrane potential is
affected when gNa is increased. At gNa=180 mmho/
cm2 we obtain a faster AP rise, but the resting
membrane potential also is increased. When gNa=
188 mmho/cm2, the resting membrane potential is
elevated above the threshold and the system be-
comes auto-oscillatory. In this regime, the larger
gNa, the faster the oscillation frequency.

The chlorine conductance helps to bring the
membrane potential back to the rest state following
an activation. For example, in the previous case
where gNa=188 mmho/cm2 and gK=36 mmho/
cm2, lowering gCl from 0.3 to 0.2 mmho/cm2

suppresses the oscillations. A small negative gCl

such as −0.01 mmho/cm2 hyperpolarizes the cell
by making it more negative during recovery.

4.1.2. The FitzHugh–Nagumo (FHN) model
applet

The FitzHugh–Nagumo model (FitzHugh,
1961) is a generic model for excitable media and can
be applied to a variety of systems. FitzHugh called
his simplified model the Bon Hoeffer–van der Pol
model and derived it in the 1960s as a simplification
of the Hodgkin–Huxley equations. The model
adiabatically eliminates the h and m gates and
retains only a slow variable similar to n, denoted
here as �. Due to its simple two-variable form and
generality, it has been used widely. The model is
able to reproduce many qualitative characteristics
of electrical impulses along nerve and cardiac
fibers, such as the existence of an excitation
threshold, relative and absolute refractory periods,
and the generation of pulse trains under the action

of external currents. We implement the model as
described by the following equations:

�U
�t

=
�2U
�x2 + (a−U)(U−1)−�,

��

�t
=�(�U−��−�) (7)

In the model, a represents the threshold for
excitation, � represents the excitability and �, � and
� are parameters that can change the rest state and
dynamics. Since this is a generic model, we keep
time in arbitrary units for simplicity.

As in the HH applet, the FHN applet shows the
activation produced by two external stimuli. In-
creasing a from its initial value of 0.1 makes it more
difficult for the external stimulus to produce an
excitation until at a=0.5, no activation is pro-
duced. The reason is that the applet uses 0.5 as the
magnitude of the external stimuli. If we instead
decrease a to a value such as −0.1, the resting
potential becomes unstable. Under these condi-
tions, the system will remain at the resting potential
if not perturbed, as can be seen by setting S1 and
S2 to times larger than the integration time. How-
ever, if an external stimulus is applied by setting S1
to 1, the system will exhibit auto-oscillatory behav-
ior, similar to that seen in the HH model for large
values of gNa.

The parameter � is responsible of the different
time scale dynamics between the U and � processes
and is some times referred as the abruptness of
excitation. In the model, the smaller the value of
� the faster will be the AP rate of rise and the longer
the plateau. Since the rate of rise is directly related
to the excitability of the system, in this model
decreasing � increases the excitability and the AP
duration. These effects can be observed in the
applet by setting both S1 and S2 to 1 and by varying
� from 0.01 to 0.0001 and increasing the integration
time as needed to see the full activation.

The FHN applet also can demonstrate how the
interval of time passing between two APs can affect
the second AP. For instance, set � to 0.0001, S1 to
0 and integration time to 700. Then alter the timing
of S2. Notice that a second activation is not
produce for S2 below the value 464. When S2=
464, an activation finally becomes possible, but the
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duration of the activation is less than half of the
previous activation (see Fig. 3a). By increasing time
to 2000 and by continuing to increase S2, it can be
seen that S2 must be at least 1500 in order for the
system to recover its original properties and to
produce a second AP as long as the first. The
relationship between the duration of an action
potential (APD) and the amount of time between
the previous activation and the second stimulus
(diastolic interval or DI) is known as restitution
and is an important characteristic of cardiac tissue.
When the heart rate increases, such as during
exercise, the lengths of cellular signals that initiate
muscular contractions are shortened in a similar
way to ensure that filling of the heart chambers and
ejection of blood occur efficiently. Without such
adaptation, ventricles would not be filled before
contracting during faster heart rates. The function
that relates APD to DI is known as the restitution
curve, and its importance in cardiac dynamics is
discussed further in later subsections.

Since the FHN model consist of only two vari-
ables, the qualitative properties of the model can
be explored by a phase-plane analysis. Therefore,
the applet also includes a phase-space plot of the
variables U and �, illustrated in Fig. 3b, in which
the computed time series U(t) and �(t) are plotted
as ordered pairs (U, �) as a function of time. The
phase-space view shows how the system starts at a
fixed point and, if excited above threshold and
allowed to return to rest, follows a closed loop back
to the fixed point. The system’s nullclines are
plotted as well to further explain the dynamics. The
nullclines are found by setting �U/�t=0 and ��/
�t=0 in Eq. (7) and solving both equations in the
form �= f(u), resulting for this system in a straight
line corresponding to the � nullcline (green) and a
cubic curve for the U nullcline (red). The system’s
fixed point is located at the intersection of the
nullclines. Raising the system above threshold
corresponds to increasing U beyond the central
portion of the cubic nullcline, so that it is in the
area under the local maximum. As U and � evolve,
they roughly follow the course of the nullclines
back to the resting state. Since � is the time scale
difference between the U and � processes, decreas-
ing � causes the solution to follow more closely the
cubic nullcline, since that process is faster. Com-

pare, for example, the phase trajectory produced by
using �=0.01 (shown in Fig. 3b) and the one
produced by using �=0.1. The evolution of the
phase space trajectory in time can be observed by
changing the integration time. Extending the inte-
gration time from 1 to 20 in. increments of 1 allows
visualization of the different speeds involved in the
phase space process. For reference, the time used
in Fig. 3b is 7.

Changing parameter values changes the null-
clines, which in turn change the dynamics. For
instance, the parameter � can shift the resting
potential from stable to unstable and make the cell
auto-oscillatory. Try changing � from 0 to 0.04 and
to 0.15 and observe the oscillatory patterns, shown
in Fig. 3c, while also noticing how the � nullcline
shifts. The oscillations occur because whenever the
fixed point is located along the central region
(positive slope) of the U nullcline, the fixed point
is unstable, giving rise to oscillations. If � is
increased further to 0.22, the oscillations cease, as
the fixed point is once again located in a region of
negative slope on the U nullcline. However, the
fixed point is now much higher than the initial
state, and the system does not exhibit a full cycle.
As another example, try changing � from 1 to 3.
This reduces the slope of the � nullcline so that it
intersects the U nullcline in three locations, rather
than just one. The middle point is unstable, but the
other two are both stable. The initial stimulus
moves the system to the upper fixed point, where
it remains until the application of the second
stimulus, which moves the system back to the lower
fixed point. For further information on parameters
and nullcline analysis we refer to Winfree (1991).

4.1.3. The Beeler–Reuter (BR) model applet
The continuous discovery of new ionic

channels in mammalian cardiac cells, as well as the
improvements in voltage-clamp techniques and
data acquisition over the past 30 years, has led to
a parallel increase in the complexity of mathemat-
ical models used to describe cardiac cell electrical
dynamics. In 1977, Beeler and Reuter (1977)
developed a model using four of eight different
ionic conductances known at the time in cardiac
muscle. They implemented an initial fast inward
sodium current INa, similar to the one used by
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Hodgkin and Huxley, but they added an inactiva-
tor slow gate variable denoted by j, a time-acti-
vated outward current Ix1, a time-independent
potassium outward current IK1, and a secondary
slow inward current Is carried primarily by cal-
cium ions. Calcium is responsible for the contrac-
tion of a cardiac cells and produces a much larger
AP plateau in cardiac cells than in nerve cells. The
total ionic current in the BR model is given by
four currents and uses eight variables: membrane

potential, six ionic gates (m, h, j, x1, f and j ) and
the intracellular calcium concentration [Ca]i). See
Beeler and Reuter (1977) for the full set of
equations.

Fig. 4a shows two APs generated by two con-
secutive stimuli using the BR model. The differ-
ence in plateau duration, shape and restitution
response can be compared with the HH and FHN
models described above. The duration of an AP in
Human ventricular cardiac tissue is on the order

Fig. 4. (a) Activations in the BR model. Voltage (red) and the d gate (yellow) are shown. (b) Activations in the LR1 model. Voltage
(red), the f gate (purple), and the intracellular calcium concentration (blue) are shown.
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of 200–300 ms. In the applet, varying the ionic
currents can change the duration and APD shape
given by the model. For instance, the calcium
current is largely responsible for the plateau phase
of the AP, so that decreasing the calcium conduc-
tance gs decreases the calcium current and thus
the APD. Decreasing gs from 0.09 to 0.04 mmho/
cm2 shortens the APD by about 50%, and the AP
shape becomes more triangular. A further de-
crease of gs to 0.01 yields an AP similar to the HH
model. On the other hand, increasing gs to 0.2
mmho/cm2 prolongs the AP and changes its shape
yet again by making the secondary rise in poten-
tial more prominent. As in the HH model, the
sodium conductance gNa is responsible for the rise
of the AP, and changes to this value also can
affect the AP shape and duration. Reducing gNa

to 1.0 or to 0.9, for example, decreases the maxi-
mum depolarization, allowing less time for the
calcium to activate and producing a smaller AP.
Increasing gNa increases the excitability of the
system and makes it easier to induce activations.
By changing gNa to 20 mmho/cm2, for instance,
the second activation becomes substantially
longer because the increased sodium conductance
allows a higher depolarization and, therefore,
more time for the calcium current to activate.
Under these conditions, it is easier to induce
subsequent activations.

In this model the restitution relation is very
strong at small DIs, that is, the smaller the differ-
ence in time between the end of the first activation
and the application of the second stimulus, the
smaller the second activation. Fig. 4a shows the
small activation that is obtained when S1 is at 20
ms and S2 is at 320 ms. The timing of S2 must be
increased much farther to about 500 ms, lengthen-
ing the DI to roughly the duration of the first AP,
in order to produce a second activation whose
duration is almost the same as the initial APD.
Second stimulus below about 315 ms do not affect
the membrane potential much since a new activa-
tion cannot be produced yet, and the system
continues to return to the rest state. However,
when gNa is larger, a second activation can be
produced earlier (e.g. at 312 ms when gNa is
increased to 20 mmho/cm2).

4.1.4. The Luo–Rudy I (LR-I) model applet
In 1991 Luo and Rudy (1991) presented an

ionic model (LR-I) for the cardiac AP in guinea
pig ventricular cells based on the BR-model, but
updated to include more recent experimental re-
sults. They reformulated the opening and closing
rate coefficients for the sodium current from the
BR-model making it a faster process and added
three new currents, one plateau potassium cur-
rent; one background current with constant con-
ductance; and an additional potassium current
with a gate variable that can be approximated by
its steady-state value due to a small time constant.
They retained the BR formulation for the slow
inward calcium current as well as the time-depen-
dent potassium current. However, they allowed
the possibility of changing the extracellular potas-
sium concentration. In total, phase one of the
LR-I describes six different currents and uses nine
variables, one of which is approximated by its
steady state and is replaced by a function, so that
only eight variables are needed in the calculation.
Later, Luo and Rudy updated their model further
to produce the LR-II model (Luo and Rudy,
1994), since then many more processes including
ionic pumps and exchangers have been added and
is currently known as the LRd (dynamic) model
(see for example Clancy and Rudy 2001, and
references therein).

The LR-I, in contrast to the BR model, pro-
duces an AP with a faster upstroke more consis-
tent with experimental observations. From our
experience with the BR model in the previous
section, we expect that because of the faster
sodium dynamics, the APD produced by the LR-I
model will be longer and with higher depolariza-
tion. Therefore, we can predict that this model
will be more excitable and will be able to produce
excitations at shorter S1–S2 coupling intervals.
We can also anticipate that the change in APD
size at shorter S1–S2 coupling intervals will be
smaller than for the BR model, and indeed this is
the case, as shown in Fig. 4b.

4.2. One-dimensional rings of excitable media

Since the early experiments in 1908 by Mayer in
jellyfish muscle (Mayer, 1908), it has been known
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that traveling waves can be self-maintained in
rings of excitable tissue. These continuous pat-
terns of re-excitation that circulate around struc-
tural or functional obstacles have been accepted
as one of the main mechanisms responsible for
reentrant cardiac arrhythmias.

Applying a stimulus above threshold to a site in
a 1d ring generates a pulse. If all computational
nodes (hereafter referred to as cells) in the ring are
in the rest state at the time of the stimulus, the
pulse propagates in both directions, forming two
one-dimensional waves moving in opposite direc-
tions. These waves travel along the ring until they
collide and annihilate each other. However, if
only one of the two waves formed by the initial
pulse succeeds in propagating, a continuous self-
sustained wave can be initiated. This wave is an
example of reentry because without additional
stimuli it repeatedly excites the same tissue as it
travels.

In this section, we describe several applets asso-
ciated with one-dimensional rings. First, we show
a ring where all cells use the FitzHugh–Nagumo
model. Second, we discuss the restitution applet,
which illustrates how restitution can lead to com-
plex dynamics. Finally, we present an applet using
the ring geometry and a 3-variable cell model that
further demonstrates the effects of restitution.

4.2.1. The FitzHugh–Nagumo ring applet
The 1D-FHN JAVA applet consists of 200 cell

units connected to form a ring. The plot area
shows the strip of tissue along the x-axis. The
value at the right edge is identical to the value at
the left edge due to the periodic boundary condi-
tions, thus forming a loop or a ring. The y-axis
indicates the voltage value of each cell, with the
red line denoting the initial rest state. When the
applet is started, cells 45–50 are excited above
threshold in order to produce a pulse. The cells to
the right of the excitation are set initially as
refractory (by inactivating the slow gate variable),
and consequently the pulse only propagates to the
left and forms a reentrant wave with a period
determined by the length of the ring and the
dynamical properties of the medium. The gate
variable can be visualized by checking the �-gate
choice box. The Reset button sets all cells to the

rest state and sets all parameters back to the
initial values. The Restart button resets all
parameters back to the initial values and re-ini-
tiates the unidirectional wave.

As in the FHN single cell applet, the parame-
ters can be changed in real-time and observe their
effects on the propagating wave. For example,
varying � can change the amplitude and speed of
the wave, while varying � and � can make the
system auto-oscillatory as in the single cell case.
Fig. 5a shows the left-moving reentrant wave
initiated by pressing the Start button, produced
by the initial conditions, and subsequently altered
by slowly decreasing epsilon from 0.01 to 0.0005
to produce a longer APD. The simulation can be
slowed down to allow more time for observation
by using the Slower button. Cells along the strip
of tissue can be excited above or below threshold,
possibly to initiate or to terminate waves, by
clicking with the mouse inside the plot area at any
time. The stimulus is applied at the cell in the
cable closest to the x-position of the mouse, and
its strength is proportional to the y-position of
the mouse. For example, Fig. 5b shows a wave
propagating to the left and a super-threshold
stimulus initiated to its right. The effect of small
and large perturbations can be studied by varying
the threshold for excitation a and the time and
size of the external stimuli.

When a stimulus is applied to the back of a
wave, one of three scenarios arises. (1) If the
stimulus is applied too close to the wave back, all
the surrounding tissue is refractory and no excita-
tion is produced. (2) If the stimulus is applied too
far from the wave back, all the surrounding tissue
has recovered to the rest state, and two new waves
moving in opposite directions are produced. The
wave moving in the opposite direction of the
original wave eventually collides with and annihi-
lates it, leaving again only one wave rotating in
the ring. (3) If the stimulus is applied in a region
known as the vulnerable window, where the tissue
on the side closer to the wave back is refractory
but the tissue on the side farther from the wave
back is excitable, therefore, only one wave is
produced. This wave propagates in the opposite
direction of the original wave, and eventually the
two waves collide and annihilate each other. The
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Fig. 5.

applet is a good tool to try to produce the three
scenarios. Slowing the simulation speed may be
helpful.

The number of reentrant waves that can fit on
the ring depends on the wavelength and on the
size of the ring. Using the initial set of values, the
ring in the applet can support up to five traveling
waves, as shown in Fig. 5c. Reproducing this
pattern requires understanding many of the prin-
ciples of excitable media and reentrant waves and
is a recommended exercise.

4.2.2. The restitution applet
As mentioned earlier, APD restitution curves

are functions that relate the duration of an APD
to the previous interactivation time, or DI. When
APD depends little on the previous DI, the resti-
tution function is almost flat. This is the case of
the FHN model when � is about 0.01. As �

decreases the APD restitution steepness increases.
As the restitution function becomes steeper, small
changes in DI elicit large changes in APD. In
particular, when the slope of the restitution func-
tion is greater than one, there is a Hopf bifurca-
tion and oscillations of APD arise. Under such
conditions, the dynamics of traveling waves be-
comes more complex.

Fig. 6a shows an image from the restitution
applet illustrating the APD oscillations obtained
when the period of a train of consecutive pulses is
past the Hopf bifurcation. The period is defined
as the sum of the APD and the DI and is denoted
by a blue line at −45°. The transitions between a
steady APD state and APD oscillations can be
observed by varying the period up and down with
the mouse. For sufficiently small periods, the DI
can fall below the minimum DI (that is the DI’s
for which no AP can be generated), resulting in

Fig. 5. (a) Instantaneous picture of a one-dimensional wave
propagating to the left in a ring geometry of 200 cells using the
FHN model. The fast variable U is shown in black and the
slow variable � is shown in green. The red line indicates the
initial rest state. (b) External excitation produced by clicking
with the mouse on the window. The amplitude of the stimulus
is proportional to the y-position of the mouse when it was
clicked, while the x-position determined the location of the
stimulus. (c) Five traveling waves propagating to the left on
the ring.
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Fig. 6.

what is known as conduction block and failure of
wave propagation.

4.2.3. The 3-�ariable ring applet
The 3V-model 1D applet (Fig. 6b) shows a

wave propagating on a ring with up to 300 unit
cells using a simplified ionic model for cardiac
cells. This model can be fitted to experimental
restitution curves and is further described in (Fen-
ton and Karma, 1998). In this case it has been
tune as to produce an APD restitution curve with
a steep slope, meaning that the slope is greater
than one for a range of DI’s, as shown in Fig. 6a.
Within the applet, the size of the ring can be
changed in real time, thus changing directly the
period of rotation. In this applet, for single unidi-
rectional waves propagating in rings larger than
230 U, the period of rotation is in the range for
which the APD restitution curve has a slope less
than one, resulting in stable waves (although some
transient APD oscillations may be present if rings
sizes are decreased too quickly). As the ring size is
decreased below 225 cells and the period reaches
the points in the restitution curve with slope
greater than one, the system undergoes a Hopf
bifurcation and oscillations of APD begin to oc-
cur. Fig. 6c shows an example of the complex
patterns that result. Notice that although there is
only one wave front, its duration in some parts of
the tissue is short while in others it is long. This
phenomenon is known in cardiology as discordant
alternans, and it is believed to be an important
factor preceding the initiation of serious arrhyth-
mias such as ventricular fibrillation (Pastore et al.,
1999). The alternans disappears as the ring size is
increased again above 230 U. For further infor-
mation on the mechanisms of discordant alter-

Fig. 6. (a) Example of an APD restitution curve with a region
having slope greater than one. By sliding the blue line that
defines the period of traveling waves, it is possible to observe
the Hopf bifurcation and the increase in APD oscillations. (b)
Instantaneous picture of a wave propagating on a large ring
with a constant period. (c) The same wave as in (b), but on a
smaller ring. The shorter period induces oscillations of APD
throughout the tissue and produces a complex spatio-temporal
pattern.
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nans, see Watanabe et al. (2001) and references
therein). The minimum ring size for which propa-
gation persists in this system is about 195 cells.
This is because at this periods the oscillations will
reach DI lower than the minimum DI resulting in
conduction block. These conduction blocks pro-
duced dynamically are an important mechanism
for initiating complex dynamics in 2D, as dis-
cussed below.

4.3. Two-dimensional cardiac tissue

In actual cardiac tissue, pre-existing fixed obsta-
cles in the tissue, such as scars, orifices, calcified
plaques, and diseased regions with reduced ex-
citability, can block propagating waves and allow
spiral waves to form. These spirals can pin to the
obstacle, propagating around them in a topologi-
cally analogous way to the one-dimensional
reentry case, with the period of rotation given by
the size of the obstacle and the conduction veloc-
ity dynamics along the pathway. Simulations of
cardiac models in two dimensions also can sup-
port spiral waves. In the following applets, we
show examples of spiral waves formed by dynam-
ical functional blocks, which also can cause wave
break in cardiac tissue. The first applet uses a
square domain, while the second applet incorpo-
rates a realistic ventricular geometry so that its
effects may be analyzed.

4.3.1. The FitzHugh–Nagumo sheet applet
The 2D FHN applet allows the study of wave

propagation in a two-dimensional square of tis-
sue, with 200 cells along each side. The physical
size of the tissue can be varied either by resizing
the computational grid between 200 and 50 (using
the size entry panel) or by changing the spatial
resolution �x (which may require changing the
size of the time step �t to preserve the integration
scheme’s stability).

The Start button initiates the simulation with
the same set of initial conditions as in the one cell
and 1D FHN applets. It also initiates a plane
wave on the left edge of the tissue, which propa-
gates to the right. The Reset h button sets all the
upper half of the tissue back to the rest state, so
that pressing this button when a wave is in the

tissue blocks the upper half and breaks it, forming
a spiral wave as previously discussed in Section 3
(see Fig. 7a). The spiral wave dynamics can be
affected by changing the parameters of the model
(for a survey of spiral wave tip trajectories as
function of parameters, see Winfree (1991, 1992),
Belmonte et al. (1997)). In the case of very low
excitability (��0.02), spiral waves do not form,
since wave breaks do not curl but instead retract
(Karma, 1991).

The voltage and gate variable traces can be
recorded at any time and at any point in the
tissue. This is done by activating the trace button,
checking the appropriate box (Voltage and/or �-
gate), and then clicking at the desired location in
the tissue. A white dot marks the recording posi-
tion in the 2D plot and the graph area displays
the trace as function of time. It also displays the
coordinates of the recording site in the tissue grid
as well as the value, as shown in Fig. 7a. The gate
variable can be visualized instead of the voltage
by selecting the �-gate choice button. For
whichever field is displayed (U or �), three color
map choices are available. The Restart button
resets the tissue to rest state and reinitiates a wave
on the left side.

As in the 1D applets, an external stimulus can
be applied to the tissue with the mouse. However,
to avoid moving the recording trace site (denoted
with the white dot), it is necessary to click on the
S1 button to enable the stimulus before clicking in
the tissue. A stimulus in the tissue behaves the
same way as in the 1D case. If the whole tissue
surrounding the excitation is in the rest state,
propagation succeeds in all directions and a target
pattern (circular wave) forms. If the tissue sur-
rounding the activation is in the refractory state,
the excitation dies out. However, if only part of
the tissue surrounding the excitation is refractory,
propagation succeeds in some directions and fails
in others, leading to a broken wave with two ends
that become two counter-rotating spirals (Win-
free, 1992). The simplest way to visualize this
effect is to start the applet and slow down the
simulation by decreasing dt. Then apply a stimu-
lus on the back of the plane wave that propagates
from the left edge. The plane wave leaves behind
a gradient of refractoriness in the medium, so that
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Fig. 7. (a) Spiral wave induced in the 2d FHN sheet applet. Areas of highest voltage are shown in red and orange, with the lowest
voltages in blue. The voltage and �-gate traces at the location of the white dot in the upper panel are shown in the lower panel. (b)
Spiral wave breakup induced by the application of external stimuli in the 2d FHN sheet applet.

if the stimulus is applied at the right time behind
the wave, it produces two counter-rotating spirals.
It is possible to study how easily the spirals can be
initiated by varying the size of the stimulus and its

location relative to the plane wave. To vary the
size of the stimulus, which is always square, type
the new size in grid units in the space below the
stimulus button. Fig. 7b shows a complex spatio-
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temporal pattern produced by multiple waves in-
duced by a series of external stimuli.

There are two ways to terminate all the electrical
activity in the tissue, one is by using the Restart
button, the other one is to reset the whole tissue
back to the rest state by stimulating the whole
tissue at once (e.g. try a size of 400 U for the S1
stimulus) this is similar to applying a defibrillation
shock.

4.3.2. The FitzHugh–Nagumo �entricular slice
applet

In cardiac tissue, two other factors can strongly
affect wave dynamics. First, propagation is an-
isotropic, with a wave speed roughly three times
faster along the long axis of cells than in other
directions. Second, the geometric structure is com-
plex, with curved surfaces, cavities, and varying
tissue thickness. Both anisotropy (Panfilov and
Keener, 1995; Fenton and Karma, 1998) and
anatomic structure (Fenton et al., 2001) can make
the wave dynamics more complex. To illustrate
some of these effects, we include a 2D applet that
can simulate the propagation of waves using the
FHN model in a slice of ventricular tissue. We use
one 2D plane from a full 3D dissected rabbit heart
(Vetter and McCulloch, 1998), with a spatial reso-
lution of 0.025 cm. The slice corresponds to the
upper part of the ventricles. The thicker left ventri-
cle is shown on the left and the thinner right
ventricle is on the right. The effect of fiber orienta-
tion, which is the direction of fastest propagation
at each point and varies substantially throughout
the tissue, can be included in the simulation by
using the fibers button. Fig. 8 shows the propaga-
tion of a unidirectional wave from the left ventricle
to the right ventricle and through the interventric-
ular septum. Fig. 8 also shows how the anatomy
of the slice supports reentry. In this example, the
tissue contains a single reentrant wave that circu-
lates continuously through the left ventricle and
the septum in a manner roughly analogous to the
one-dimensional ring geometry. Every time the
reentrant wave reaches the junction of the septum
and the right ventricle (twice during a given loop,
at the lower (Fig. 8a) and upper (Fig. 8b) junctions
as they appear in the applet), it generates a tran-
sient wave in the right ventricle. The two waves in

the right ventricle annihilate each other (their
collision course is seen in Fig. 8b), while the wave
in the left ventricle continues to circulate.

By changing the parameters of the model, it is
possible to vary the wavelength of waves produced
in the tissue, which can affect their dynamics. For
sufficiently small wavelengths, compared with the
tissue thickness, is possible to fit a spiral. There-
fore, multiple unidirectional waves as well as spiral
waves can be initiated.

5. Conclusions

We have described a set of instructive JAVA

applets that represent a variety of excitable media,
with a particular focus on cardiac cells and tissue.
Single cell applets include the Hodgkin–Huxley
(neural), FitzHugh–Nagumo (general), Beeler–
Reuter (cardiac), and Luo–Rudy I (cardiac) mod-
els. The applets also include a restitution applet,
one-dimensional rings using the FHN model and
a 3-variable model, and a two-dimensional sheet
and ventricular slice using the FHN model. To-
gether, these programs can demonstrate many
phenomena, including how ionic currents interact
during AP generation, how repetitive stimulation
can affect tissue dynamics by altering restitution,
how blocking of a given ionic current affects
membrane potential, how premature stimuli and
conduction blocks can be used to generate and to
terminate reentrant arrhythmias, and how geome-
try affects propagation. Thus they can be used not
only as introductory illustrations, but also as so-
phisticated tools to deepen one’s understanding of
excitable media dynamics.

The web site includes additional applets not
described in this paper, such as a 2D sheet using
the Karma model (Karma, 1993). This applet
allows visualization of the breakup of spiral waves
due to oscillations of APD when the period of
spiral rotation lies in the region for which the APD
restitution has a slope greater than one. The
oscillations are analogous to the ones produced in
the 1D ring with the 3-variable model, but their
effect is more complex in two dimensions, since
they can generate conduction block and initiate
multiple spiral waves.
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The set of applets presented here for the study
of excitable media and cardiac dynamics are being
updated continuously. We will continue to include

additional cellular models, in particular second-
generation ionic models. These more complex
models include more detailed ionic currents along

Fig. 8. Reentrant wave circulating through a 2d slice of rabbit ventricles using the FHN model. (a) At this time, the wave is moving
from the left ventricle, where it continuously circulates, into the right ventricle and the interventricular septum. (b) After traveling
through the septum, the wave splits into two pieces, one entering each ventricle. The new wave in the right ventricle will collide with
the existing wave located there, while the new wave in the left ventricle will continue to circulate in the same manner.
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with additional physiological mechanisms, such as
ionic pumps and exchangers. Examples are the
Luo–Rudy phase II model (Luo and Rudy,
1994), the Luo–Rudy dynamic model (Clancy
and Rudy 2001, and references therein), and the
Winslow et al. model (Winslow et al., 1999) for
ventricular cells and the Courtemanche et al.
(1998), Nygren et al. (1998) models for atrial cells.
In addition, we plan to include other anatomical
models, such as the (Nielsen et al., 1991) canine
ventricle. Later on we also will include other
biological and chemical models for excitable me-
dia as well as 3D JAVA interfaces.
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Appendix A. Cross-programming with JAVA:
calling C and FORTRAN from JAVA

In this section we show how to integrate native
programs into JAVA. This is useful when JAVA is
intended only as a graphic user interface (GUI)
and the rest of the computation is done in another
language.

The JNI is a powerful part of the JAVA Devel-
oping Kit (JDK) that allows JAVA codes to inter-
act with applications and libraries written in other
languages. The JNI provides a framework for
many processes and permits native codes to cre-
ate, access, and update JAVA objects. Therefore, it
is easy for JAVA methods to call native methods
and vice versa by using the JNI framework. In
this Appendix we describe how to integrate an
existing C or FORTRAN program into JAVA by
showing how scalars and arrays can be passed
among C, FORTRAN, and JAVA.

It is worth noting that there are two major
issues to consider when integrating native codes

into JAVA codes. First, JNI only interfaces with C

and C+ + . Therefore, merging JAVA with any
other language such as FORTRAN, PASCAL, DEL-

PHI, ASSEMBLY, etc. needs the use of a small C or
C+ + interconnecting program. Second, JNI
only passes scalars and vectors. Therefore, ma-
trices need to be converted into vectors before
they can be shared. This can be accomplished
easily through careful indexing. For example, a
two-dimensional matrix u(i,j ) of size m×n can
be mapped to a vector using the indexing scheme
�(i*m+ j ), and a three-dimensional matrix
u(i,j,k) of size m×n×p can be mapped to a
vector using the indexing scheme �((i*m+ j )*n+
k).

Integrating a native program with JAVA is a
multi-step procedure. To illustrate we create a
JAVA program that initializes two 2D matrices
(5×5) (one single precision and the other double
precision), which are sent along with two parame-
ters (one integer and one real) to a FORTRAN

program. The FORTRAN code updates some of
these parameters and arrays and then sends the
values back to the JAVA program.

These test codes can also be downloaded from
our web site.

The JAVA code: DemoNative.JAVA

public class DemoNative
{

private static final int matrixSize=5;
private native void doCalc(double par,
float[] v, double[] u, int nx);
static{

System.loadLibrary(‘‘DemoNative’’);
}

public void goForIt()
{

float v[]=new float[matrixSize * matrixSize];
double u[]=new double[matrixSize *
matrixSize];
double par=13.1416;
int nn=0;
int nx=25;
for ( int i=0; i�matrixSize; i+ + ) {

for ( int j=0; j�matrixSize; j+ + ){
nn=nn+1;
v[i*matrixSize+ j]=nn;
u[i*matrixSize+ j]= -nn;}
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}
System.out.println(‘‘Before calling C
function’’);
System.out.print(‘‘’’+par+ ‘‘’’);
System.out.println(‘‘’’);
System.out.print(‘‘’’+nn+ ‘‘’’);
System.out.println(‘‘’’);

for ( int i=0; i�matrixSize; i+ + ){
System.out.print(‘‘’’+v[i*matrixSize]+
‘‘’’);
System.out.print(‘‘’’+u[i*matrixSize]

+ ‘‘’’);
System.out.println(‘‘’’);

}
System.out.println(‘‘Now calling C
function’’);
doCalc(par, v, u, nx);
System.out.println(‘‘After calling C
function’’);
for ( int i=0; i�matrixSize; i+ + ) {

System.out.print(‘‘’’+v[i*matrixSize]

+ ‘‘’’);
System.out.print(‘‘’’+u[i*matrixSize]

+ ‘‘’’);
System.out.println(‘‘’’);

}
System.out.print(‘‘’’+par+ ‘‘’’);
System.out.println(‘‘’’);
System.out.print(‘‘’’+nn+ ‘‘’’);
System.out.println(‘‘’’);

}
public static void main(String args[]){

DemoNative dn=new DemoNative();
dn.goForIt();

}
}
The elements of the JAVA code are as follows.

The native call is provided by the function ‘do-
Calc()’, whose objective is to send a double value
‘par’, a single precision array ‘v’, a double preci-
sion array ‘u’ and an integer value ‘nx’ to the
native method and then get them back when the
method is completed. To indicate that the func-
tion ‘doCalc()’ is not implemented in JAVA, but in
C/C+ + , we need to define it as a native proce-
dure, i.e. ‘private native void doCalc(double par,
float[] v, double[] u, int nx);’. JAVA needs to load

this function in a dynamically linked library when
the program begins execution. This is indicated in
the JAVA code by using ‘static{System.
loadLibrary(‘‘libraryname’’);}. In the example,
DemoNative has been chosen as the name for the
dynamic library.

The rest of the JAVA program is defined in the
‘goForIt()’ function which initializes the arrays,
prints some of the values on the screen, executes
the native call, and finally prints the new values
on the screen for comparison.

The C/C+ + connecting code: Csubroutine.c
c include � jni.h�
c include ‘‘DemoNative.h’’
c include �stdlib.h�
c include �sys/types.h�
c include � time.h�
cdefine matrixSize 5
c ifndef–ALPHA /* necesary only for Dec al-
pha */
extern float ‘‘C’’ void fortransub– ();
celse
extern void fortransub– ();
cendif
JNIEXPORT void JNICALL Java–
DemoNative–doCalc
(JNIEnv *env, jobject jo, jdouble par, jfloatAr-
ray jv, jdoubleArray ju, jint nx)
{

int i, j;
/* Retrieve array length from environment
*/
jsize len= (*env)-�GetArrayLength(env,
jv);
/*Retrieve contents of the array*/
jfloat * v= (*env)-�GetFloatArrayEle-
ments(env, jv, 0);

/*Retrieve contents of the array*/
jdouble * u= (*env)-�GetDoubleAr-
rayElements(env, ju, 0);

fortransub– (v,u,&par,&nx);
/* releases the computed values back to
JAVA */

(*env)-�ReleaseDoubleArrayElements(env,
jv, v, 0);
(*env)-�ReleaseDoubleArrayElements(env,
ju, u, 0);



F.H. Fenton et al. / BioSystems 64 (2002) 73–96 93

}
The elements of the C/C+ + code can be di-

vided into two parts, the JAVA side and the FOR-

TRAN side.
On the JAVA side, the native C/C+ + code

cannot directly access primitive JAVA arrays or
strings. However, the JNI provides functions that
can obtain pointers to elements of arrays (see Ref
sun for further information on rules for mapping
different JAVA types such as Boolean, bytes, char-
acters, etc, with their native equivalents). These
functions are incorporated into the header file
DemoNative.h, which must be included in the
C/C+ + code. The header file is created when
compiling the DemoNative.JAVA code using the
JNI, as we discuss further below. The function
that connects with the Java code is given by
JNIEXPORT void JNICALL Java–DemoNa-
tive–doCalc(JNIEnv *env, jobject jo, jdouble par,
jfloatArray jv, jdoubleArray ju, jint nx), where the
first two parameters of the function provide infor-
mation about the JAVA environment to the C/C+
+ and the rest are the parameters and arrays sent
from the JAVA code. Unlike C/C+ + , arrays in
JAVA carry length information, so before mapping
types it is necessary to obtain the size array. This
is done by jsize len= (*env)-�GetArrayLength(-
env, jv); Then the conversion from JAVA to C/C+
+ arrays is done by the functions
(*env)-�GetFloatArrayElements(env, jv, 0); and
(*env)-�GetDoubleArrayElements(env, ju, 0) for
v and u, respectively. Unlike C/C+ + , JAVA has
an automatic garbage collection that reclaims dy-
namically allocated memory when it determines
that there are no longer references to an object
and thereby avoids some memory leaks. The
garbage collector, therefore, may move JAVA ar-
rays. The JNI either ‘pins’ down the array or
makes a copy in non-movable memory to assure
that the result of Get*ArrayElements() points to a
non-movable array while the native code executes.
For this reason, the C/C+ + code must call the
function Release*ArrayElements() when it has
finished using the array, to allow the JAVA code to
free the array and obtain the new values that the
native method may have modified.

When a C/C+ + code calls a function or a
subroutine in another language, the compiler

needs to treat the call according to the other
language’s calling convention. This is not different
when calling FORTRAN, where the name for the
function or subroutine is system- and compiler-
dependent. However, in most UNIX systems, the
function name as seen from C/C+ + is the origi-
nal FORTRAN name converted into lower case and
with an underscore appended to it (some compil-
ers do not follow this convention, such as the ones
for HP and CRAY which have their own
conventions).

In this example we use fortransub–
(v,u,&par,&nx) as the name for the subroutine.
FORTRAN and C/C+ + have different parameter
passing conventions. FORTRAN parameters are
passed by address while C parameters are passed
by value. Therefore, when calling FORTRAN sub-
routines or functions from C/C+ + it is necessary
to pass explicitly any non-array argument as a
pointer by including the character & just in front
of the name of the variable passed. Another dif-
ference between C/C+ + and FORTRAN is in the
arrays convention. Indices in C/C+ + arrays al-
ways start from 0 while in FORTRAN they start at
1 unless otherwise specified. Furthermore, for
multidimensional arrays, C/C+ + stores each
row continuously in memory FORTRAN stores
each column continuously. Therefore, indices
need to be written in opposite direction when
arrays are passed back and forward.

The FORTRAN code: Fsubroutine.f90.

SUBROUTINE fortransub(v,u,par,nx)
implicit real*8(a-h,o-z)
real*4 v
dimension v(0:24),u(0:24)

WRITE(*,*)‘Calculating now in Fortran’
do i=0,nx-1

v(i)=v(i)+par
enddo

END SUBROUTINE fortransub
The FORTRAN code is a simple subroutine that

adds the value of the parameter ‘par’ to all the
elements of the v array.

Once the three codes have been written they
need to be compiled and the order of compilation
is important. Some of the compiling flags and
libraries for C/C+ + and FORTRAN are machine-
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dependent. Here we give the options necessary to
compile on a Compaq and PC under WINDOWS.
For other operating systems such as Sun or
LINUX we refer to (Ziemlinski and Pletzer, 1999).

The DemoNative.java needs to be compiled
first:

Javac DemoNative.java
This produces the executable DemoNati�e.class.

The next compile statement,
Javah– jni DemoNative,
produces the header file DemoNati�e.h, which

includes the important prototype information for
mapping Java types with their native equivalents
and is used by the C/C+ + code as described
above. Since JAVA is platform-independent, the
JAVA compilation is the same in any machine.

The next step is to generate the dynamic library
that is loaded by DemoNati�e.class when exe-
cuted. For this we first create an object file from
the FORTRAN code and then link it to the C/C+
+ when generating the dynamic library.

For Dec alpha:
f95 –c Fortransub.f90
cxx -D–ALPHA -shared -pthread -o libDe-

moNative.so -I/usr/opt/java122/include -I/usr/
opt/java122/include/alpha/ csubroutine.c
fortransub.o -lfor

For Windows using VISUAL C+ + :
Start a new file, click on the ‘Projects’ tab in the

dialog menu and on ‘Win32 Dynamic-Link Li-
brary’. Then name the project with the same name
as the JAVA class (in this case, DemoNative).
Then click on ‘empty project’ and create the
C/C+ + program (in this case, paste in the Csub-
routine.c code). Add the code to the project (right
click on ‘DemoNative files’ on the left plane, and
select ‘add files to project’). Add the ‘DemoNa-
tive.h’ header in similar way. Ensure that all files
are in the same directory or in the path and click
on the ‘Build’ menu.

This is only to generate the dynamic library
from a C/C+ + code; to include a fortran code
we refer to the VISUAL C+ + man pages.

Notice that the name of the dynamic library
depends on the operating system. In UNIX the
library generated is called liblibraryname.so while
in windows it is libraryname.dll.

Once the dynamic library is generated then the
DemoNati�e.class can be ran.

JAVA DemoNative
This produces the following output:
Before calling C function
13.1416
25
1.0-1.0
6.0-6.0
11.0-11.0
16.0-16.0
21.0-21.0
Now calling C function.
Calculating now in FORTRAN.

After calling C function.
14.1416-1.0
19.1416-6.0
24.1416-11.0
29.1416-16.0
34.1416-21.0
13.1416
25
The speed gained by using C or FORTRAN,

rather than JAVA, to perform the computationally
intensive part of an algorithm will depend on
many factors such as the machine architecture,
the compilers used, the operations performed and
the degree of optimization (Haney, 1994).

Nevertheless for completeness and as an exam-
ple, we show the results obtained when simulating
a 2D FHN model on a 650 MHz Compaq Alpha.
We simulated 400 iterations of FHN on a 2D grid
of 200×200 elements using a pure JAVA (J) code,
a JAVA+C (JC) code and a JAVA+C+FORTRAN

(JCF) code. The codes were structured in the
same way and no optimizations were performed
on any of them. The CPU time used was as
follow: 143 s for the J code, 48 s for the JC and 19
s for the JCF code. Therefore, compared with J,
JC was three times faster, and JCF 7.5 times
faster. Passing data from language to language
took less than 1% of the total time and, therefore,
does not seemed to have much effect on computa-
tional speed in this example.

For additional information on JNI, compila-
tion methods and options we refer to SUN (1997),
Anderson (1998), Ziemlinski and Pletzer (1999).
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